tribution of reduced complexes $(CoL_n^+(n=0-3))$ initially produced is kinetically determined, equilibration of Co(1) and L does occur via a sequence of outer-sphere electron-transfer processes culminating in net binding of L (the equilibrium CoL_n^+ + $\text{Col}_{n+1}^{2+} \rightleftharpoons \text{Col}_{n+1}^{2+} + \text{Col}_{n+1}^{2+}$ lies to the right). The high rate constants found for these equilibrations require outer-sphere self-exchange rates greater than 10^8 M⁻¹ s⁻¹ for the CoL_n^{2+/+} couples $(n > 0)$, indicating very similar structures for CoL²⁺ and $Co⁺$ and for $Co²⁺$ and $Co⁺$, as has been previously noted for Col_3^{2+} and Col_3^+ . The stepwise binding constants for Col^+ and L are large 10^6 – 10^{12} M⁻¹), and the CoL_n^{2+/+} reduction potentials vary from <-1.6 V $(n = 0)$ to -0.95 V $(bpy (n = 3))$. The magnitudes of the stability constants of the cobalt(1) complexes and of the self-exchange rates of the Co(I)-Co(II) couples suggest the importance of Co(I) πd to L π^* back-bonding in the CoL₂⁺ and $CoL₃⁺$ series.

Acknowledgment. This work was carried out at Brookhaven National Laboratory under Contract DE-AC02-76CH0016 with the **US.** Department of Energy supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. We thank D. Comstock for his assistance with some of the experiments.

Registry No. $Co(bpy)^{2+}$, 15878-93-0; $Co(bpy)_2^{2+}$, 15878-94-1; Co- $(bpy)_3^2$ ⁺, 15878-95-2; Co(dmb)²⁺, 93503-94-7; Co(dmb)₂²⁺, 93503-95-8; Co(dmb)_{3}^{2+} , 47837-98-9; Co(bpy)_{7} , 93503-96-9; Co(bpy)_{3}^{+} , 47780-35-8; Co(bpy)₂*, 23852-07-5; Co(dmb)*, 93503-97-0; Co(dmb)₂*, 93503-98-1;
Co(dmb)₃*, 47837-97-8; Co(bpy)R²⁺, 93503-99-2; Co(bpy)₂R²⁺, 93530-03-1; Co(bpy)₃R²⁺, 93504-00-8; Co(dmb)R²⁺, 93504-01-9; Co- $(\text{dmb})_2R^{2+}$, 93504-02-0; Co $(\text{dmb})_3R^{2+}$, 93504-03-1; Co $(\text{bpy})\text{CO}_2^+$, $Co(dmb)CO_2^+$, 93504-07-5; $Co(dmb)_2CO_2^+$, 93504-08-6; Co- $(dmb)_3CO_2^+$, 93504-09-7; R., 5131-95-3; CO₂-, 14485-07-5; OH, 93504-04-2; $Co(bpy)_{2}CO_{2}^{+}$, 93504-05-3; $Co(bpy)_{3}CO_{2}^{+}$, 93504-06-4; 3352-57-6.

> Contribution from the Chemistry Department, N.R.C. Democritos, Aghia Paraskevi, Athens, Greece

Photocatalytic Generation of Hydrogen by 1:12 Heteropolytungstates with Concomitant Oxidation of Organic Compounds

A. IOANNIDIS¹ and E. PAPACONSTANTINOU*

Received June 21, 1984

1:12 heteropolytungstates with the Keggin structures $PW_{12}O_{40}^{3-}$, $SW_{12}O_{40}^{4-}$, $FeW_{12}O_{40}^{5-}$ and $H_2W_{12}O_{40}^{6-}$ undergo multielectron photoreduction in the presence of a great variety of organic reagents in near-visible and UV light. Photoaddition of electrons drives the redox potential to more negative values sufficient to reduce, from a thermodynamic point of view, hydrogen ions in the presence of a Pt catalyst. It turns out that hydrogen is produced in the presence and absence of Pt. Photoreduction proceeds to the extent that the rate of photoreduction matches the back-reoxidation by H^+ . The reduction step at which this takes place depends on the tungstate used. Thus, for instance, with PW₁₂³⁻ this happens at a higher reduction step than $H_2W_{12}^6$, which is reduced at more negative reduction potentials. When Pt catalyst is present, the reduction potential at which the steady-state H_2 evolution is obtained is less negative. Average rate constants, from all four tungstates, of H_2 evolution at the steady state were (5.6 \pm 3.1) \times 10⁻⁴ and (2.6 \pm 1.8) \times 10⁻⁴ s⁻¹ with and without Pt, respectively. The efficiency of H₂ production is of the order of one molecule of hydrogen **per** 100 photons absorbed. The low yield represents the low efficiency of photoproduction of higher reduction products. For PW₁₂O₄₀³⁻ the quantum yields of photoaddition of the first and second electron are ca. 0.15 and 0.01, respectively.

Heteropolycompounds (HPC) of molybdenum and tungsten are known to undergo multielectron reduction in distinct reduction steps by chemical and electrochemical means.2 The reduction is reversible in the sense that reduced HPC can be reoxidized without decomposition. Reduction has been subsequently obtained by radiolysis through a variety of short-lived organic radicals,³ whereas recently the multielectron photoreduction of these compounds in the presence of a variety of organic reagents has been demonstrated.⁴

It has been pointed out that reduced HPC could, from a thermodynamic point of view, reduce $H^{+,5}$ While this work was in progress, hydrogen was produced from photoreduced $\sin W_{12}O_{40}$ ^{4-,6} whereas the feasibility of hydrogen production by the chemically reduced form of this compound has been demon-

- (2) (a) Pope, **'M.** T.; Varga, G. **M.,** Jr. *Inorg. Chem.* **1966,** *5,* 1249. (b) Pope, M. T.; Papaconstantinou, E. *Ibid.* **1967,6,** 1147. (c) Varga, G. M.; Papaconstantinou, E.; Pope, M. T. *Ibid.* **1970,** *9,* 662. (3) Panaconstantinou. E. *J. Chem. SOC.. Faradav Trans.* **1982.** *78.* 2769.
-
- i4j (ajPapaconstantinou, E.; Dimotikali,' D.; Poliiou, **A.** *Inorg. Chim. Acta* **1980,46,** 155. (b) Papaconstantinou, E. *J. Chem. Sor., Chem. Com mun.* **1982,** 13.
- *(5)* Papaconstantinou, E.; Dimotikali, D.; Ioannidis, **A,;** Argitis, P. *J. Photochem.* **1981,** *17,* 171.
- (6) Darwent, J. R. J. *Chem. Soe., Chem. Commun.* **1982,** 798.

Introduction
Half-Wave Potentials for the First Two 1-Electron Reductions²⁸
Half-Wave Potentials for the First Two 1-Electron Reductions²⁸

anion	λ ^a nm	$E_{1/2}$, \overline{b} V	pH dependence
PW_{12}^3	265.0	-0.023	none
		-0.266	none
SiW_{12}^{4-}	262.0	-0.187	none
		-0.445	none
FeW_{12} ⁶⁻	264.0	-0.349	none
		-0.577	below $pH 4.0$
H_2W_{12} ⁶⁻	257.5	-0.581	below pH 4.9
		-0.730	below pH 5.4

 a In 1 M sulfuric acid. b In 1 M sulfate at 25 °C.

strated by Russian workers,⁷ who recently extended their work to photochemistry.

This paper describes and compares the photochemical production of hydrogen by a series of $1:12$ tungstates in which there (1) Taken in part from: Ionnidis, A. Ph.D. Thesis.

(2) (a) Pope, M. T.; Varga, G. M., Jr. *Inorg. Chem.* 1966, 5, 1249. (b) **Experimental Section**

Experimental Section

The 1:12 tungstates, namely $PW_{12}O_{40}^3$ -, Si $W_{12}O_{40}^4$ -, Fe $W_{12}O_{40}^5$ -, and $H_2W_{12}O_{40}^{\text{6}-}$, designated for simplicity as $PW_{12}^{\text{12}-}$, Si $W_{12}^{\text{14}-}$, Fe $W_{12}^{\text{15}-}$, and

⁽⁷⁾ Savinov, E. N.; Saidkhanov, S. S.; Parmon, V. N.; Zamaraev, K. I.
React. Kinet. Catal. Lett. 1981, 17, 407.
(8) Saidkhanov, S. S.; Kokorin, A. I.; Savinov, E. N.; Vokov, A. I.; Parmon, V. N. J. Mol. Catal. 1983, 31, 36

Figure 1. Typical absorption spectra and kinetic **runs** of HPC. Spectra: (a) nonreduced PW_{12}^{3-} showing the oxygen to metal CTB that are responsible for the photosensitivity; (b) photoreduced PW_{12}^3 - showing gradual reoxidation, by H⁺, after illumination had been shut off. Max-
imum absorbance corresponds to addition of \sim 1.4 electrons. Conditions: $[PW_{12}^{3-}] = 5 \times 10^{-4}$ M; [isopropyl alcohol] = 1.0 M; [Pt catalyst] = \sim 5 **X** 10" M in 0.1 M HC104. Inset: kinetics of absorbance change corresponding to reoxidation of reduced PW_{12}^3 - with concomitant evolution of hydrogen.

 H_2W_{12} ⁶⁻, respectively, were prepared according to well-established methods.2a Spectral and electrochemical potentials were in accordance with the well-known literature data, presented in Table I at the suggestion of one reviewer. All chemicals were of analytical grade.

Aqueous solutions **of** HPC in the presence of organic compounds were deaerated with Ar, scrubbed with **V2*,** and photolyzed with a highpressure Hg arc and a 150-W Xe lamp using filters or a monochromator. The progress of photoreduction was followed by the characteristic spectra of reduced HPC. Actinometry was monitored during photolysis with a selenium photocell calibrated with iron(II1) oxalate. The liberated hydrogen was collected over the solution, withdrawn with a syringe, and analyzed with a Perkin-Elmer gas chromatograph using N_2 as carrier gas, and a I-mm i.d. **X** 4-m length column packed with a 50-60 mesh molecular sieve.

Colloidal Pt was made, in situ, from K_2PtCl_4 , by reduction with the photochemically reduced tungstates, which took place before evolution of hydrogen. It was also made by boiling H_2PtCl_6 with sodium citrate.⁶ The data reported below were obtained with Pt reduced with sodium citrate.

It should be noted that the efficiency of the Pt catalyst dropped to about 50% after \sim 20 h of photolysis.

Results and Discussion

It has been reported that 1:12 tungstates are photosensitive at near-visible and **UV** light in the presence of a great variety of organic additives.^{4,5} Excitation is accompanied by multielectron reduction of HPC, producing the **so-called** heteropoly blues (HPB), and oxidation of the organic species. Consecutive photoreduction drives the redox potentials toward more negative values, which, as is known, are oxidized back to the original nonreduced species by atmospheric oxygen. This is used in the photocatalytic oxidation of organic compounds.^{4b} If, however, oxygen is excluded, the redox potentials are negative enough² to cause, from a thermodynamic point of view, reduction of H⁺.⁵ This may be accomplished in the presence of a Pt catalyst to overcome the high reduction potential necessary for the reduction of atomic hydrogen complished in the presence of a Pt catalyst to overcome the high reduction potential necessary for the reduction of atomic hydrogen $[H^+ + e^- \rightarrow H; E^{\circ} = -2.2 \text{ V}]$ and produce instead molecular hydrogen $[2H^+ + 2e^- \rightarrow H_2; E^{\circ}$ E_7 and E_0 are potentials at pH 7 and 0, respectively].⁹

Table **11.** Maximum Number of Electrons Added Photochemically in the Presence of Isopropyl Alcohol (1.0 M) in 0.1 M HClO₄^a

	max no. of added electrons			max no. of added electrons	
compd	without p_+b	with p_+b	compd	without $\mathbf{p}_t b$	with p_+b
$\frac{PW_{12}^{3}}{SiW_{12}^{4}}$	2.2	1.3 ሰ ዓ	$FeW_{1.2}$ ⁵⁻ $H, W,$ e^-	1.4 າ າ	0.3 0.2

^{*a*} Conditions: [HPC] = 5×10^{-4} M; photolysis with Xe 150-W lamp without filter (deaeration with Ar). $\frac{b}{c}$ Values within 20%; concentration of Pt catalyst \sim 5 \times 10⁻⁶ M.

Table **111.** Average Rates of Hydrogen Evolution and HPB Reoxidation of All Photochemically Reduced Tungstates^a

	rate, 10^{-10} mol s ⁻¹	rate const of reoxidn	
condition	Н,	reoxidn	of $HPCd$
	evolution ^b	of $HPCc$	10^{-4} s ⁻¹
with Pt ^e	4.4 ± 1.8	4.2 ± 1.8	5.6 ± 3.1
without Pt	3.6 ± 1.6	2.2 ± 1.0	2.6 ± 1.8

^{*a*} Conditions: [HPC] = 5×10^{-4} M; [isopropyl alcohol] = 1.0 M in 0.1 M $HClO₄$; photolysis with a Xe 150-W lamp without filter (deaerated with Ar). \degree Obtained by dividing the total H₂ produced, at the steady state, by the time. ^c Calculated, at the steady state, from the initial *-5%* of reoxidation, after the lamp had been shut off. ^a Calculated from pseudo-first-order rate plots with A_{∞} obtained from best linear fit. A_{∞} is not easy to define as there is, depending on the HPC, a mixture of reduced tungstates in solution, each one having as A_{∞} its lower, by one electron, oxidation step. e Concentration of Pt catalyst \sim 5 \times 10⁻⁶ M.

It turns out that reduced HPC are capable of H₂ evolution with and without a Pt catalyst. Whereas they are not useful as sensitizers, they absorb very little in the visible region, they seem to be useful as electron carriers (relays). Photoreduction proceeds to the extent that the rate of photoreduction matches the backreoxidation by H^+ . The reduction step at which this takes place depends on the HPC used. Thus, for instance, with PW_{12}^3 - this happens at a higher reduction step than with $H_2W_{12}^{\ 6-}$, which is reduced at more negative reduction potentials. When Pt catalyst is present, the reduction potential at which the steady-state H_2 evolution is obtained is less negative. However, it should be noted that after \sim 100 h of photolysis, i.e. \sim 30 cycles, the effectiveness of the Pt catalyst was practically nullified.

Figure **1** shows typical absorption spectra and kinetics of reoxidation by H⁺ of HPC. With, for instance, CH₃OH and 1:12 tungstates given generally as W_{12} ⁿ⁻, the hydrogen evolution is obtained by the reactions **(1)-(4),** which are in essence dehydration

$$
W_{12}^{\prime\prime\prime}
$$
 + CH₃OH $\xrightarrow{h\nu}$ W₁₂⁽ⁿ⁺¹⁾⁻ + CH₂OH + H⁺ (1)

$$
W_{12}^{(n+1)-} + CH_3OH \xrightarrow{hv} W_{12}^{(n+2)-} + CH_2OH + H^+ (2)
$$

$$
W_{12}^{(n+1)-} + CH_2OH \to W_{12}^{(n+2)-} + CH_2O + H^+ (3)
$$

$$
V_{12}^{(n+1)-} + \dot{C}H_2OH \rightarrow W_{12}^{(n+2)-} + CH_2O + H^+ \qquad (3)
$$

$$
W_{12}^{(n+2)-} + H^+ \rightarrow W_{12}^{(n+1)-} + \frac{1}{2}H_2 \qquad (4)
$$

$$
W_{12}^{(n+2)-} + H^+ \to W_{12}^{(n+1)-} + \frac{1}{2}H_2
$$
 (4)

of methanol (eq **5).** However, the hydrogen produced does not

$$
CH3OH \rightarrow CH2O + H2
$$
 (5)

come from the alcohol, as the two processes, i.e. photolysis and hydrogen production, could take place independent of each other.^{4b,7} Reactions 1 and 2 represent the photochemical reduction of W_{12} ^r, which is followed by radical reduction (reaction 3). The CH,OH radical, as well as other hydroxyalkyl radicals, are known to be powerful reducing reagents, able to reduce HPC.³ The reaction mechanism presented here is similar to the photocatalytic oxidation of organic compounds by HPC,^{4b} except that reoxidation

⁽⁹⁾ *See* for instance: (a) Kirch, M.; Lehn, J.-M.; Sauvage, J. P. *Helu. Chim. Acta* **1979**, *62*, 1345. (b) Grätzel, M. *Acc. Chem. Rees.* **1981**, *14*, 376.

Figure 2. Schematic diagram of H₂ evolution by 1:12 tungstates. "Org" is an organic reagent that undergoes irreversible oxidation. Hydrogen is produced with and without the Pt catalyst.

of reduced tungstates takes place by H+.

Another possible mechanism would be the formation of an alkoxide. However, tungstate ions in HPC are already coordinated to six oxygen atoms, and another oxygen on a seventh coordination site is unlikely.1°

Table I1 shows the maximum number of electrons obtained with and without a Pt catalyst, whereas (Table I11 shows the average rates of hydrogen evolution and HPC reoxidation for all four photochemically reduced tungstates. It should be noted that the extent of reduction and, subsequently, the rate of hydrogen evolution are a function of the intensity of incident light. Extent of reduction is the point at which a steady state is obtained; i.e., the rate of photoreduction of HPC (reactions 1-3) is matched by the rate of reoxidation by H⁺ (reaction 4).¹¹

 (11) The calculations of the maximum number of electrons, obtained at the steady-state condition, was made simply from the absorbance and the **known** molar absorptivities of the reduced species. For instance, if the absorbance indicated that the there was a mixture of 1- and 2-electron-reduced products, then if C_1 and C_2 were the corresponding percent concentrations and ϵ_1 and ϵ_2 the molar absorptivities, $C_1\epsilon_1 + C_2\epsilon_2 = 100A/C_1$ and $C_1(1e) + C_2(2e) = 100Y_e$, where Y_e is the total number of electrons added to the HPC and *C,* is the concentration of HPC.

Apparently HPC also serve as heterogeneous catalysts, in the absence of metallic Pt, but are not as effective. The cycle for H_2 evolution is depicted in Figure 2. The rate of H_2 production is limited by the low quantum yield of HPB production. The quantum yield for the first reduction step (addition of one electron) is of the order of ~ 0.15 , with alcohols, glycols, and glycol acids presenting generally higher quantum yields than carboxylic acids. The quantum yield drops to about ~ 0.01 for the second reduction step of PW_{12}^{3-12} This is in accordance with the ease of hydrogen abstraction from organic compounds.¹³

Reoxidation of HPBs by H^+ seems to be 100% efficient. The rate of reoxidation of HPB (reaction **4)** was followed by the change in absorbance of the HPB bands at \sim 750 nm, after the photolysis lamp was shut off (Table III; Figure 1). This was done by carefully excluding oxygen, first by deaeration and second by repeating cycles of photoreduction and back-reoxidation in which the leftover oxygen was consumed. The total production of hydrogen, measured by gas chromatography, verified reaction **4.** About 1 mL of hydrogen was generally produced from 10 mL of HPC $(5 \times 10^{-4} \text{ M})$ and isopropyl alcohol (1 M) in 0.1 M HC104, after **24** h of photolysis with a 150-W Xe lamp. This amounts to an efficiency of the order of one molecule of hydrogen per 100 photons absorbed. The low yield represents the low efficiency of photoreduction of higher reduction products as mentioned before.

Comparing this to other systems, one notes that here one substance, the HPC, functions as sensitizer, relay, and catalyst, as opposed to three components, namely $Ru(bpy)$ ²⁺, MV^{2+} , and the platinum catalyst used in the best known system **so** far. A serious disadvantage, though, is the low absorptivity of HPC in the visible area. However, with appropriate sensitizers, these compounds might be useful as relays and photocatalysts. Work, on these matters, is in progress.

Acknowledgment. We thank M. *Z.* Hoffman and N. Rakintzis for useful discussions and comments. Financial support from NATO is gratefully acknowledged.

Registry No. $PW_{12}O_{40}^{3-}$ **, 12534-77-9;** $\text{SiW}_{12}O_{40}^{4-}$ **, 12363-31-4;** FeW₁₂O₄₀⁵, 12181-27-0; $H_2W_{12}O_{40}$ ⁶, 12207-61-3; CH₃OH, 67-56-1; Pt, 7440-06-4; H,, 1333-74-0; isopropyl alcohol, 67-63-0.

(12) Dimotikali, D.; Papaconstantinou, E. *Znorg. Chim. Acta* **1984,87,** 177. (13) See for instance: Swallow, **A.** J. *Prog. React. Kinet.* **1978,** *9,* 195.

Contribution from the Dipartimento di Chimica, Universită di Perugia, 06100 Perugia, Italy

Notes

Kinetics of Stepwise Aquation of the trans-Dicyanotetraamminechromium(II1) Cation

Pietro Riccieri and Edoardo Zinato*

Received February 15. 1984

In transition-metal chemistry, cyanide stands out among the acido ligands because of several features of kinetic interest: (i) the exceptional stability of the coordinate **bond;** (ii) the large trans effect; (iii) the high basicity that enables extensive proton uptake by the coordinate group.' As part of a continuing study of the ground-state² and excited-state reactivity³⁻⁵ of Cr(III) cyano

ammines, we report here on the aquation kinetics of *trans-Cr-* $(NH_3)_4(CN)_2^+$ and trans-Cr(NH₃)₄(H₂O)(CN)²⁺. The purpose was to characterize the role of protonation, with regard to both its equilibrium and kinetic aspects, made particularly significant by the trans arrangement of the CN⁻ ligands.

Besides our previous account on $Cr(NH₃)₅(CN)²⁺,²$ other kinetic studies of CN^- aquation in $Cr(III)$ systems have been reported for some members of the $Cr(H_2O)_{6-n}(CN)_n^{3-n}$ series.⁶⁻⁹

Experimental Section

frans-[Cr(NH₃)₄(CN)₂](ClO₄) was prepared by a reported proce-dure.¹⁰ *trans*-Cr(NH₃)₄(H₂O)(CN)²⁺ was obtained in situ by acid

See for instance: Charman, H. **B.** *J. Chem. SOC. B* **1967,** 629 and references therein.

⁽¹⁾ For recent reviews on cyano complexes **see:** (a) Griffith, W. **P.** *Coord. Chem. Rev.* 1975,17,177. **(b)** Sharpe, **A.** G. "The Chemistry of Cyano Complexes of the Transition Metals"; Academic Press: London, 1976.

⁽²⁾ Riccieri, P.; Zinato, E. *Inorg. Chem.* **1980,** *19,* 853.

⁽³⁾ Riccieri, P.; Zinato, E. *Inorg. Chem.* **1980,** *19,* 3279.

⁽⁴⁾ Zinato, E.; Riccieri, P.; Prelati, M. *Znorg. Chem.* **1981,** *20,* 1432.

⁽⁵⁾ Riccieri, P.; Zinato, E. *Znorg. Chem.* **1983,** *22,* 2305.

⁽⁶⁾ Birk, J. P.; Espenson, J. H. *Inorg. Chem.* 1968, 5, 991.
(7) Wakefield, D. K.; Schaap, W. B. *Inorg. Chem.* 1969, 8, 512.
(8) Wakefield, D. K.; Schaap, W. B. *Inorg. Chem.* 1969, 8, 811.
(9) Wakefield, D. K.; Schaap,

⁽¹⁰⁾ Riccieri, P.; Zinato, E. *Znorg. Chem.* **1981,** *20,* 3722.